Environmental Layers and Background points
In this step we prepare the background points (BP) we need to train maxent. We will use 10,000 background points but not distribute them randomly over the whole study area. Instead we use conditioned latin hypercube sampling
(CLHS) (Minasny & McBratney, 2006) as implemented in the R package clhs. The conditioned latin hypercube sampling distributes the points in a way over the study area that all variables of the environmental data are represented as well as possible.
To do this you first need to download the environmental grids for Ontario, Canada from here if you have not already done it and save them in the layers
folder of your project. Then execute the script below.
The map shows the distribution of the background points created with conditioned latin hypercube sampling on all environmental layers:
Full screen version of the map
Now we finished preparing all the data we need and will have a short look into the spatialMaxent functionalites on the following page.